Xiaoyin Chen

xiaoyin.chen@mila.quebec | chenyn66.github.io | Google Scholar

EDUCATION

Mila, Université de Montreal Sept. 2023 – Present Doctor of Philosophy, Computer Science, Advisor: Prof. Yoshua Bengio GPA: 4.00/4.00 **Duke University** Aug. 2021 – May 2023 Master of Science, Computer Science, Advisor: Prof. Sam Wiseman GPA: 4.00/4.00 University of California, Irvine Sept. 2016 – Mar. 2020 Bachelor of Science, Computer Science, Minor in Statistics GPA: 3.94/4.00, Major GPA: 3.99/4.00

Research

Language Model Augmented Information Retrieval

Duke University | DukeNLP

- Proposed a query reformulation model by leveraging pretrained language models;
- Derived a differentiable loss function based on BM25 scoring to enable end-to-end training and direct optimization;
- Reduced the average retrieval latency from 2 minutes to 4.5 seconds compared to the previous SOTA augmentation method (GAR) while achieving competitive performance;

Commonsense Reasoning via Knowledge Infused Text Generation

Duke University

- Improved and implemented a general framework for applying arbitrary non-differentiable constraints to text generation inspired by cognitive Dual-System approach;
- Formulated text generation as a tree search problem and applied a modified Monte Carlo Tree Search algorithm;
- Utilized GPT-3 for fact checking to ensure the generated sentences are consistent with commonsense;
- Improved the average constraint satisfaction rate from 90.1% to 98.4% compared to the baseline.

Evaluating and Improving Logical Reasoning Capability with Syllogisms Oct. 2022 – Dec. 2022 Duke University Mentor: Prof. Bhuwan Dhingra

- Proposed and implemented a pipeline for automatically generating logical questions without any human labeling;
- Developed an algorithm that samples logical questions in symbolic form by composing all 24 valid syllogisms;
- Written 100+ templates for verbalizing symbolic expressions to ensure the variety of utterances;
- Demonstrated that GPT-3 is unable to consistently infer syllogisms and generalize to a greater depth, even when all rules are given in the prompt;
- Improved logical QA accuracy on a human-written dataset by 3% by pre-training with synthetic data.

Applied Machine Learning in Political Science

Duke University | DevLab@Duke (now DevLab@Penn)

- Proposed a machine learning framework for predicting civic space events from a large, noisy, machine-generated data;
- Created a pipeline for data pre-processing, model training, predicting and interpreting;
- Improved the interpretability of a tree-based boosting model by visualizing its decision function and decision path;
- Achieved 70%+ precision and 50%+ recall in predicting certain events in several countries;
- Developed a time-series model inspired by the sequential data structure.

Semi-supervised Learning with VAEs

University of California, Irvine | Learning, Inference, & Vision Group

- Designed and implemented a baseline dataset to easily visualize and debug semi-supervised learning performance of models:
- Proposed and tested variants of model architectures, loss functions, sampling methods, and prior distributions;
- Implemented and tested semi-supervised methods from related papers;
- Evaluated and improved disentanglement properties of the latent representations.

Networks Alignment Analysis in Bioinformatics

University of California, Irvine

• Derived conditions for optimal network alignments by information theory;

Aug. 2022 – Jan. 2023 Mentor: Prof. Sam Wiseman

Oct. 2022 – Dec. 2022

Mentor: Prof. Sam Wiseman

Oct. 2021 – Sept. 2022

Mentors: Dr. Jeremy Springman, Prof. Erik Wibbels

Mentor: Prof. Erik Sudderth

Sept. 2018 – Jan. 2020

Mentor: Prof. Wayne Hayes

Aug. 2019 – Dec. 2020

- Designed and performed empirical analyses of derived conditions using the Hungarian Algorithm;
- Proposed the first theory that explains the alignability of networks as a function of the input graph size.

Probabilistic Graphical Models for Noise Detection

University of California, Irvine

- Collaborated with Prof. David Mobley of the Department of Chemistry;
- Proposed a probabilistic graphical model for correcting energy transition errors in chemical reaction networks constrained by the law of conservation of energy;
- Applied Gibbs sampling to infer the maximum a posteriori estimator of node energy levels;
- Reduced MSE from 1.63 to 1.12 (30% improvement) compared to the previous method.

PUBLICATIONS & PREPRINTS

BM25 Query Augmentation Learned End-to-End

Xiaoyin Chen, Sam Wiseman.

Under Review, https://arxiv.org/abs/2305.14087, 2023.

An Early Warning System for Democratic Resilience: Predicting Shocks to Civic Space

Xiaoyin Chen, Jeremy Springman, Erik Wibbels.

Technical report, 2022.

Learning Consistent Deep Generative Models from Sparse Data via Prediction Constraints

Gabriel Hope, Madina Abdrakhmanova, **Xiaoyin Chen**, Michael C. Hughes, Erik B. Sudderth.

4th Symposium on Advances in Approximate Bayesian Inference, 2022. arxiv.org/abs/2012.06718.

On the Current Failure – But Bright Future – of Topology-driven Biological Network Alignment Siyue Wang, **Xiaoyin Chen**, Brent J. Frederisy, Benedict A. Mbakogu, Amy D. Kanne, Pasha Khosravi, Wayne B. Hayes.

Advances in Protein Chemistry and Structural Biology: Protein interaction networks, Volume 131. https://arxiv.org/abs/2204.11999.

Cross-species Prediction of Protein Function by Global Network Alignment (Presentation)

Siyue Wang, **Xiaoyin Chen**, Brent J. Frederisy, Benedict A. Mbakogu, Amy D. Kanne, Pasha Khosravi, Giles R.S. Atkinson, Wayne B. Hayes.

28th Conference on Intelligent Systems for Molecular Biology (protein prediction track), 2020. https://www.iscb.org/cms_addon/conferences/ismb2020/tracks/functioncosi.

Using Cycle Closure Constraints to Estimate and Correct for Errors in Calculated Relative Binding Free Energies

Xiaoyin Chen, David L. Mobley, Wayne B. Hayes. Unpublished manuscript, 2020

Work Experience

Deep Learning Engineer Intern

Tencent, Guangzhou, China

- Worked on deep learning for semantic matching and information retrieval;
- Implemented and tested 8+ models from related papers;
- Proposed a novel padding method by dynamical expanding;
- Developed a joint model CNN and LSTM that achieved the best performance on the internal dataset.

TEACHING EXPERIENCE

Teaching Assistant

 $Duke \ University$

• CS590.05 Spring 2023: Computational Biology.

Undergrad Tutor & Grader

University of California, Irvine

- ICS-33 Spring 2017: Intermediate Programming in Python;
- + ICS-46 Fall 2018: Data Structure Implementation and Analysis in C++.

SERVICE

Reviewer: ACL 2023, EMNLP 2023

Jul. 2018 – Sept. 2018

Sept. 2019 – Jan. 2020 Mentor: Prof. Wayne Hayes