
BM25 Query Augmentation Learned End-to-End

Anonymous ACL submission

Abstract

Given BM25’s enduring competitiveness as an001
information retrieval baseline, we investigate to002
what extent it can be even further improved by003
augmenting and re-weighting its sparse query-004
vector representation. We propose an approach005
to learning an augmentation and a re-weighting006
end-to-end, and we find that our approach im-007
proves performance over BM25 while retaining008
its speed. We furthermore find that the learned009
augmentations and re-weightings transfer well010
to unseen datasets.011

1 Introduction012

Despite the enormous progress in neural informa-013

tion retrieval (IR) techniques over the last several014

years (Karpukhin et al., 2020; Xiong et al., 2020;015

Dai and Callan, 2019, inter alia), simply using016

BM25 (Robertson et al., 1995; Crestani et al., 1998)017

remains a strong baseline approach (Thakur et al.,018

2021; Sciavolino et al., 2021). This is especially019

the case if it is important that retrieval be fast, or020

that the retrieval method not consume too much021

memory or disk space. Given the effectiveness of022

this rather simple baseline, it is natural to won-023

der whether BM25 might become an even more024

competitive baseline with a bit of additional engi-025

neering.026

One straightforward approach to improving027

BM25 while retaining its favorable properties is028

to do query augmentation — that is, to augment the029

query with additional tokens, thereby improving030

the quality of the retrieved documents. Notably,031

Nogueira and Cho (2017) propose to learn query032

augmentations using reinforcement learning (RL)033

techniques, with recall-at-K as the reward. While034

query augmentations are indeed discrete (consist-035

ing of word tokens), and therefore certainly conge-036

nial to RL methods, we show that augmentations037

can be much more simply learned end-to-end, in038

the course of minimizing a standard contrastive039

loss.040

We find that our augmentation approach im- 041

proves performance, while allowing for retrieval 042

that is as fast, and sometimes even faster, than 043

BM25. Moreover, our approach can be realized 044

by simply modifying the query and IDF vectors (re- 045

spectively), which allows for doing retrieval with 046

standard tools, such as Pyserini (Lin et al., 2021). 047

In particular, unlike many recent sparse approaches 048

to retrieval (e.g., SPLADE (Formal et al., 2021)) 049

we do not need to re-encode the documents. 050

Finally, we find that our approach transfers well 051

between datasets. This is an encouraging find- 052

ing, since transfer can be challenging for neural 053

IR methods, while it is typically not a challenge for 054

BM25. Code for reproducing all models and exper- 055

iments is available at hidden.for.submission. 056

2 Augmenting BM25 057

Recall that BM25 (Robertson et al., 1995; Crestani 058

et al., 1998) scores the compatibility between a 059

query q, viewed as a set of tokens, and a document 060

d, also a set. Given a collection D of N documents, 061

and assuming a vocabulary V , let v ∈ R|V| be the 062

document collection’s inverse document-frequency 063

(IDF) vector, defined as 064

vi = log(
N − |{d ∈ D | wi ∈ d}|+ 0.5

|{d ∈ D | wi ∈ d}|+ 0.5
+ 1), 065

where |{d ∈ D | wi ∈ d}| counts the number of 066

documents in the collection in which word type wi 067

appears. Also let f(d) ∈ R|V| be a document d’s 068

BM25 term-frequency vector, defined as 069

f(d)i =
count(wi, d)(k + 1)

count(wi, d) + k(1− b+ b|d|
M)

, 070

where count(wi, d) counts the number of times 071

word type wi appears in document d, k and b 072

are hyperparameters, and M is the average length 073

of the documents in the collection. Finally, let 074

bow(q) ∈ {0, 1}|V| be the binary bag-of-words 075

1

hidden.for.submission

representation of q, where bow(q)i is 1 if wi ∈ q,076

and is 0 otherwise. The BM25 score between q and077

d can then be written as078

BM25(q, d) = (v ⊙ bow(q))⊤f(d),079

where ⊙ is element-wise multiplication.080

Augmenting differentiably To augment BM25’s081

query vector, one can produce an additional set082

of tokens q̂, and then score documents with (v ⊙083

bow(q ∪ q̂))⊤f(d). While q̂ is of course discrete,084

we observe that if we are willing to rescale v085

element-wise by some additional vector c ∈ R|V|,086

we have087

c⊙ v ⊙ bow(q ∪ q̂) = v ⊙ (bow(q) + a)088

for a ∈ R|V|, so long as ai = cibow(q ∪ q̂)i −089

bow(q)i. Moreover, we have that ai ̸= 0 only090

if bow(q ∪ q̂)i = 1. Thus, we can predict a as091

our non-discrete augmentation vector, and score092

documents with093

(v ⊙ (bow(q) + a))⊤f(d),094

and this will be equivalent to scoring with (c⊙v⊙095

bow(q ∪ q̂))⊤f(d) for some c.096

In practice, we use a model to produce both097

the a vector as well as an additional element-wise098

weighting vector w, as parameterized functions099

of the query q. This leads to the following final100

scoring function:101

score(q, d) = (1)102

(w(q)⊙ v ⊙ (bow(q) + a(q)))⊤f(d),103

where we have written w(q) and a(q) to empha-104

size that these are (parameterized) functions of the105

query. This scoring function is differentiable with106

respect to both a(q) and w(q), and we can there-107

fore train the models producing these vectors with108

a standard objective, described below. We also de-109

scribe below how to regularize a(q) to ensure it is110

sparse.111

Retrieval Since ai is nonzero only when q or q̂112

contains wi, at retrieval time we can extract the113

augmented set q ∪ q̂ from a to be our augmented114

query. If we then define a new IDF vector v′ with115

elements v′i = wivi(bow(q)i+ai), we can use stan-116

dard BM25 implementations to retrieve the highest-117

scoring documents using v′ as the IDF vector, and118

this will be equivalent to retrieving documents un-119

der c⊙ v ⊙ bow(q ∪ q̂) for some c.1120

1Some implementations of BM25, such as Pyserini’s, allow
rescaling IDF values directly, which is what we do.

Parameterization We feed a linearized q into 121

a pretrained BERT-like (Devlin et al., 2019) en- 122

coder, after first prepending to it a [CLS] token. 123

Let enc(q)0 ∈ RE be the encoder’s representation 124

of the [CLS] token, and let enc(q)i ∈ RE be the 125

encoder’s representation of the i-th token in the 126

query, for i ≥ 1. We then parameterize a and w as 127

follows: 128

a(q) = ReLU(Wenc(q)0) 129

w(q)i = ReLU(u⊤enc(q)i), 130

where W ∈ R|V|×E and u ∈ RE . 131

Training We train end-to-end, using a standard 132

contrastive loss: 133

Lrank = − log
exp (score(q, d+))∑

d′∈D−∪{d+} exp (score(q, d
′))

, 134

where d+ is a positive document provided by the 135

training dataset, and D− consists of hard negatives 136

mined by BM25 as well as in-batch negatives, fol- 137

lowing the approach of Karpukhin et al. (2020). 138

Sparse regularization Note that in practice, 139

BM25’s retrieval speed depends on how many dis- 140

tinct word types appear in the query. In order to 141

promote retrieval efficiency, we regularize a(q) to 142

ensure it is sparse. We found it beneficial to en- 143

courage sparsity more for frequent words, which 144

are less discriminative. We therefore weight the L1 145

regularization per word by a monotonic function of 146

its document frequency. In particular, we use: 147

Lreg = sqrt(h)⊤a(q), 148

where hi = |{d∈D|wi∈d}|
N , and where the square- 149

root is applied elementwise. Our final training loss 150

is then L = Lrank + λLreg. 151

3 Experiments 152

Datasets We evaluate the retrieval performance 153

of our proposed method on Natural Questions (NQ; 154

Kwiatkowski et al., 2019), EntityQuestions (Sci- 155

avolino et al., 2021), and MSMARCO passage 156

ranking task (Bajaj et al., 2016). We use Trivi- 157

aQA (Joshi et al., 2017) and EntityQuestions to test 158

out-of-distribution retrieval. 159

Experimental Details We initialized all models 160

with distilbert-base-uncased (Sanh et al., 2019), 161

using the Hugging Face implementation (Wolf 162

et al., 2020). On NQ, models were trained with 163

2

the AdamW optimizer (Kingma and Ba, 2015;164

Loshchilov and Hutter, 2018), using a learning rate165

of 3e−4, a batch size of 144, and a value for λ166

of 0.1. We trained the models for 45 epochs with167

1 hard negative per sample. We used the same168

settings for training on EntityQuestions but only169

trained for 10 epochs. On MSMARCO, we used170

3e−5 for the learning rate, 144 for the batch size,171

and 0.025 for λ. Models were trained for 2 epochs172

with 4 hard negatives per sample. We trained and173

evaluated our models on a single A6000 GPU.174

Training took about 70 minutes on NQ and 30 min-175

utes on MSMARCO. Documents were tokenized176

by BERT’s WordPiece tokenizer and indexed by177

Pyserini (Lin et al., 2021). We also used Pyserini178

for retrieval at test time.179

Tokenization We emphasize that the perfor-180

mance of standard BM25 depends on the tokeniza-181

tion used. Since we use a distilbert model, we must182

tokenize queries and documents with a WordPiece183

tokenizer (Kudo, 2018; Devlin et al., 2019). Be-184

cause this is not the default tokenization employed185

by Pyserini, we report baseline BM25 numbers us-186

ing both tokenizations. We refer to BM25 with187

the default Pyserini tokenization as “BM25 (Py-188

serini)” and BM25 with the WordPiece tokeniza-189

tion as “BM25 (Ours).”190

3.1 Retrieval Performance191

We report results and latencies on NQ, EntityQues-192

tions, and MSMARCO in Table 1. We measure per-193

query latency using wall-clock time on the same194

machine. On NQ, our method improves 12.1 per-195

centage points in top-5 retrieval accuracy over the196

vanilla BM25 while adding only 43 milliseconds197

in latency. Compared to GAR (Mao et al., 2021),198

an alternative query augmentation method that au-199

toregressively predicts the target document given200

a query, our method retrieves much more quickly201

and performs only slightly worse.202

On MSMARCO and EntityQuestions, our203

method consistently improves over the baseline204

BM25. Notably, our method achieves lower latency205

than BM25 on MSMARCO since our weighting206

allows skipping some terms in the query by setting207

corresponding w(q)i to 0. On EntityQuestions, a208

dataset designed to demonstrate the inconsistency209

of dense retrievers, our method outperforms both210

BM25 and DPR.211

NQ Acc@5 Acc@20 Latency

BM25 (Pyserini) 0.436 0.629 0.099s
BM25 (Ours) 0.430 0.589 0.103s
GAR+BM25 0.609 0.744 5min
DPR 0.668 0.781 30min
SEAL 0.613 0.762 35min
Ours 0.557 0.694 0.146s

EntityQuestions Acc@5 Acc@20 Latency

BM25 (Pyserini) 0.616 0.720 0.060s
BM25 (Ours) 0.526 0.637 0.094s
DPR - 0.684 -
Ours 0.693 0.798 0.669s

MSMARCO NDCG@10 R@100 Latency

BM25 (Pyserini) 0.228 0.658 0.020s
BM25 (Ours) 0.217 0.623 0.031s
SPLADE 0.433 - 1.764s
Ours 0.251 0.687 0.030s

Table 1: Retrieval results on NQ, EntityQues-
tions, and MSMARCO. Non-BM25 baselines include
GAR+BM25 (Mao et al., 2021), DPR (Karpukhin et al.,
2020), and SEAL (Bevilacqua et al., 2022) on NQ, DPR
on EntityQuestions, and SPLADE (Formal et al., 2021)
on MSMARCO. Results and latencies for non-BM25
methods are taken from their respective papers. Latency
for DPR on NQ is reported by Mao et al. (2021); the
latency number is unavailable for DPR on EntityQues-
tions. Latency for SPLADE is measured with the Py-
serini implementation.

3.2 Transfer Results 212

One of the major concerns relating to language- 213

model-assisted retrieval is that it may not generalize 214

well out-of-distribution. To test our method in a 215

transfer setting, we select the best model trained on 216

NQ, and test it on TriviaQA and EntityQuestions 217

without further fine-tuning. We show the results of 218

this experiment in Table 3, where we see that our 219

method generalizes to both datasets, and improves 220

from the baseline by 2-3 percentage points. At the 221

same time, it is clear from comparing the results 222

of BM25 (Pyserini) with BM25 (Ours) that the 223

Pyserini tokenization is helpful for these datasets. 224

We anticipate being able to further improve given a 225

pretrained model using the preferred tokenization, 226

which we leave to future work. 227

3.3 Ablation Study 228

In Table 2 we present the results of ablating various 229

aspects of our approach on the NQ dataset. Our full 230

setting achieves the best balance between accuracy 231

and efficiency. Compared to a uniform L1 penalty, 232

our L1 penalty weighted by document frequency 233

achieves lower latency while predicting augmen- 234

3

Accuracy@5 Accuracy@20 Latency Augmentation Length

Full Setting 0.557 0.694 0.146 12.334
- w/o Weighted L1 0.562 0.704 0.268 15.211
- w/o Weight 0.545 0.683 0.269 19.165
- w/o BM25 Scoring 0.487 0.635 0.225 31.861
- w/o BM25 Scoring & Weighted L1 0.525 0.670 0.377 21.794

Table 2: Ablation experiments on NQ. From top to bottom, we consider our approach with a uniform weighting
of the L1 penalty (rather than by word frequency), without the elementwise weight vector w, using just a bag-of-
words rather than BM25-style query and document representations, and with both uniform L1 and bag-of-words
representations.

Accuracy@5 Accuracy@20

TriviaQA

BM25 (Pyserini) 0.677 0.773
BM25 (Ours) 0.636 0.742
Ours 0.662 0.755

EntityQuestions

BM25 (Pyserini) 0.616 0.720
BM25 (Ours) 0.526 0.637
Ours 0.542 0.656

Table 3: Results of our approach trained on NQ and
then transferred to TriviaQA (top) and EntityQuestions
(bottom).

tations of similar lengths. This suggests that the235

model is augmenting with rarer terms, thereby re-236

ducing the total number of documents in the in-237

verted index and increasing speed. We also see that238

the additional weighting w is helpful. Finally, we239

check whether using BM25-style query and doc-240

ument vectors, rather than simple bag-of-words241

vectors, is important, by replacing the scoring func-242

tion (1) with the following:243

(w(q)⊙ (bow(q) + a(q)))⊤bow(d).244

We observe that this also decreases performance.245

4 Related Work246

While recent dense retrievers have shown strong re-247

trieval performance (Reimers and Gurevych, 2019;248

Karpukhin et al., 2020), their high latencies limit249

their application to first-stage retrieval. To im-250

prove efficiency, late-interaction approaches have251

been proposed (Khattab and Zaharia, 2020; Gao252

et al., 2021; Formal et al., 2021). Here, docu-253

ments are first retrieved with an inverted-index and254

then scored by aggregating term embeddings pre-255

computed while indexing. Although such meth-256

ods reduce retrieval latencies, the need to store257

dense representations of documents significantly258

increases index sizes (Thakur et al., 2021).259

Document expansion methods, such as 260

Doc2query (Nogueira et al., 2019; Nogueira and 261

Lin, 2019), allow indexing and retrieval using 262

standard BM25. Nogueira and Lin (2019) use 263

a language model to predict possible queries 264

given a document; augmented documents are then 265

constructed by appending these queries. By adding 266

to the document, this approach addresses the 267

term mismatching issue affecting sparse retrieval 268

methods. However, this approach also requires 269

running a language model over every document, 270

which is expensive, especially if new documents 271

are added incrementally. It is also potentially 272

infeasible to do this when documents are very long. 273

In contrast, we restrict our method to only perform 274

neural operations on the queries, which are usually 275

much shorter than documents. 276

To the best of our knowledge, only a few recent 277

methods meet this requirement of only modifying 278

queries. Nogueira and Cho (2017) use reinforce- 279

ment learning to predict discrete augmentations. 280

GAR (Mao et al., 2021) and SEAL (Bevilacqua 281

et al., 2022) train language models to generate tar- 282

get documents or n-grams. Our approach differs 283

from these methods by optimizing for BM25 re- 284

trieval in an end-to-end fashion, and in being sig- 285

nificantly faster. 286

5 Conclusion 287

We propose a novel approach for learning to aug- 288

ment BM25 end-to-end with a language model. 289

Our method improves over BM25 on three differ- 290

ent datasets while retaining its efficiency. Addi- 291

tionally, we show that such improvements are able 292

to generalize out-of-distribution. With its simple 293

formulation, our method can be easily integrated 294

into existing sparse retrieval frameworks. And we 295

believe it might serve as a stronger sparse baseline 296

for future work in retrieval. 297

4

Limitations298

As mentioned in Sec. 3.2, tokenization methods299

heavily influence retrieval performance. This is a300

limitation both of BM25 and of our modification of301

it. In its current form, there are no straightforward302

solutions that allow our method to augment queries303

with words rather than the subword tokens of the304

pretrained tokenizer. Thus, in situations where305

word-tokenization is important for BM25 (some of306

which appear in Table 1), using our method would307

require pre-training a word- rather than subword-308

based model, which may be difficult.309

Relatedly, since our method makes fundamental310

use of a pretrained model as the backbone, it suf-311

fers from the same problems afflicting pretrained312

models, including susceptibility to misinformation313

and bias, and requiring significant computational314

resources.315

Ethics Statement316

As our approach attempts to improve retrieval tech-317

nology, the ethical considerations are similar to318

those of other retrieval technologies, especially319

those utilizing large pretrained language models.320

In particular, there is always a risk that the docu-321

ments retrieved by our approach will be influenced322

by errors or biases in the underlying model, and it323

is necessary to ensure this does not happen before324

deployment. Because our augmentations are token-325

based, rather than based on dense representations, it326

should be slightly easier to manually check whether327

augmentations are problematic. We also empha-328

size that our approach is relatively undemanding329

computationally, which we believe to be a positive330

feature.331

References332

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,333
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,334
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,335
et al. 2016. Ms marco: A human generated ma-336
chine reading comprehension dataset. arXiv preprint337
arXiv:1611.09268.338

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,339
Scott Yih, Sebastian Riedel, and Fabio Petroni. 2022.340
Autoregressive search engines: Generating substrings341
as document identifiers. In Advances in Neural Infor-342
mation Processing Systems.343

Fabio Crestani, Mounia Lalmas, Cornelis J Van Rijs-344
bergen, and Iain Campbell. 1998. “is this document345

relevant?. . . probably” a survey of probabilistic mod- 346
els in information retrieval. ACM Computing Surveys 347
(CSUR), 30(4):528–552. 348

Zhuyun Dai and Jamie Callan. 2019. Context-aware 349
sentence/passage term importance estimation for first 350
stage retrieval. arXiv preprint arXiv:1910.10687. 351

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 352
Kristina Toutanova. 2019. BERT: Pre-training of 353
deep bidirectional transformers for language under- 354
standing. In Proceedings of the 2019 Conference of 355
the North American Chapter of the Association for 356
Computational Linguistics: Human Language Tech- 357
nologies, Volume 1 (Long and Short Papers), pages 358
4171–4186, Minneapolis, Minnesota. Association for 359
Computational Linguistics. 360

Thibault Formal, Carlos Lassance, Benjamin Pi- 361
wowarski, and Stéphane Clinchant. 2021. Splade 362
v2: Sparse lexical and expansion model for informa- 363
tion retrieval. arXiv preprint arXiv:2109.10086. 364

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL: 365
Revisit exact lexical match in information retrieval 366
with contextualized inverted list. In Proceedings of 367
the 2021 Conference of the North American Chap- 368
ter of the Association for Computational Linguistics: 369
Human Language Technologies, pages 3030–3042, 370
Online. Association for Computational Linguistics. 371

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke 372
Zettlemoyer. 2017. TriviaQA: A large scale distantly 373
supervised challenge dataset for reading comprehen- 374
sion. In Proceedings of the 55th Annual Meeting of 375
the Association for Computational Linguistics (Vol- 376
ume 1: Long Papers), pages 1601–1611, Vancouver, 377
Canada. Association for Computational Linguistics. 378

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick 379
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and 380
Wen-tau Yih. 2020. Dense passage retrieval for open- 381
domain question answering. In Proceedings of the 382
2020 Conference on Empirical Methods in Natural 383
Language Processing (EMNLP), pages 6769–6781, 384
Online. Association for Computational Linguistics. 385

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi- 386
cient and effective passage search via contextualized 387
late interaction over bert. In Proceedings of the 43rd 388
International ACM SIGIR conference on research 389
and development in Information Retrieval, pages 39– 390
48. 391

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 392
method for stochastic optimization. In 3rd Inter- 393
national Conference on Learning Representations, 394
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 395
Conference Track Proceedings. 396

Taku Kudo. 2018. Subword regularization: Improv- 397
ing neural network translation models with multiple 398
subword candidates. In Proceedings of the 56th An- 399
nual Meeting of the Association for Computational 400
Linguistics (Volume 1: Long Papers), pages 66–75, 401

5

https://openreview.net/forum?id=Z4kZxAjg8Y
https://openreview.net/forum?id=Z4kZxAjg8Y
https://openreview.net/forum?id=Z4kZxAjg8Y
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007

Melbourne, Australia. Association for Computational402
Linguistics.403

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-404
field, Michael Collins, Ankur Parikh, Chris Alberti,405
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-406
ton Lee, Kristina Toutanova, Llion Jones, Matthew407
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob408
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural409
Questions: A Benchmark for Question Answering410
Research. Transactions of the Association for Com-411
putational Linguistics, 7:453–466.412

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-413
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.414
2021. Pyserini: A Python toolkit for reproducible415
information retrieval research with sparse and dense416
representations. In Proceedings of the 44th Annual417
International ACM SIGIR Conference on Research418
and Development in Information Retrieval (SIGIR419
2021), pages 2356–2362.420

Ilya Loshchilov and Frank Hutter. 2018. Decoupled421
weight decay regularization. In International Confer-422
ence on Learning Representations.423

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong424
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.425
2021. Generation-augmented retrieval for open-426
domain question answering. In Proceedings of the427
59th Annual Meeting of the Association for Compu-428
tational Linguistics and the 11th International Joint429
Conference on Natural Language Processing (Vol-430
ume 1: Long Papers), pages 4089–4100, Online. As-431
sociation for Computational Linguistics.432

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-433
oriented query reformulation with reinforcement434
learning. In Proceedings of the 2017 Conference on435
Empirical Methods in Natural Language Processing,436
pages 574–583, Copenhagen, Denmark. Association437
for Computational Linguistics.438

Rodrigo Nogueira and Jimmy Lin. 2019. From439
doc2query to docTTTTTquery. Online preprint.440

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and441
Kyunghyun Cho. 2019. Document expansion by442
query prediction. arXiv preprint arXiv:1904.08375.443

Nils Reimers and Iryna Gurevych. 2019. Sentence-444
BERT: Sentence embeddings using Siamese BERT-445
networks. In Proceedings of the 2019 Conference on446
Empirical Methods in Natural Language Processing447
and the 9th International Joint Conference on Natu-448
ral Language Processing (EMNLP-IJCNLP), pages449
3982–3992, Hong Kong, China. Association for Com-450
putational Linguistics.451

Stephen E Robertson, Steve Walker, Susan Jones,452
Micheline M Hancock-Beaulieu, Mike Gatford, et al.453
1995. Okapi at trec-3. Nist Special Publication Sp,454
109:109.455

Victor Sanh, Lysandre Debut, Julien Chaumond, and 456
Thomas Wolf. 2019. Distilbert, a distilled version 457
of bert: smaller, faster, cheaper and lighter. ArXiv, 458
abs/1910.01108. 459

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee, 460
and Danqi Chen. 2021. Simple entity-centric ques- 461
tions challenge dense retrievers. In Proceedings of 462
the 2021 Conference on Empirical Methods in Natu- 463
ral Language Processing, pages 6138–6148, Online 464
and Punta Cana, Dominican Republic. Association 465
for Computational Linguistics. 466

Nandan Thakur, Nils Reimers, Andreas Rücklé, Ab- 467
hishek Srivastava, and Iryna Gurevych. 2021. BEIR: 468
A heterogeneous benchmark for zero-shot evaluation 469
of information retrieval models. In Thirty-fifth Con- 470
ference on Neural Information Processing Systems 471
Datasets and Benchmarks Track (Round 2). 472

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 473
Chaumond, Clement Delangue, Anthony Moi, Pier- 474
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow- 475
icz, Joe Davison, Sam Shleifer, Patrick von Platen, 476
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, 477
Teven Le Scao, Sylvain Gugger, Mariama Drame, 478
Quentin Lhoest, and Alexander Rush. 2020. Trans- 479
formers: State-of-the-art natural language processing. 480
In Proceedings of the 2020 Conference on Empirical 481
Methods in Natural Language Processing: System 482
Demonstrations, pages 38–45, Online. Association 483
for Computational Linguistics. 484

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang, 485
Jialin Liu, Paul N Bennett, Junaid Ahmed, and 486
Arnold Overwijk. 2020. Approximate nearest neigh- 487
bor negative contrastive learning for dense text re- 488
trieval. In International Conference on Learning 489
Representations. 490

A Dataset Statistics 491

Dataset Train Dev Test

Natural Questions 58,880 8,757 3,610
EntityQuestions 176,560 22,068 22,075
TriviaQA 60,413 8,837 11,313
MSMARCO 502,939 6,980 -

Table 4: Number of train/dev/test queries on each
dataset. On MSMARCO, we follow the same approach
as the previous work that reports the dev set perfor-
mance of BEIR (Thakur et al., 2021).

B License 492

All packages and datasets used in our study are 493

released with Apache-2.0 or MIT licenses. 494

6

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

