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Abstract

Given BM25’s enduring competitiveness as an001
information retrieval baseline, we investigate to002
what extent it can be even further improved by003
augmenting and re-weighting its sparse query-004
vector representation. We propose an approach005
to learning an augmentation and a re-weighting006
end-to-end, and we find that our approach im-007
proves performance over BM25 while retaining008
its speed. We furthermore find that the learned009
augmentations and re-weightings transfer well010
to unseen datasets.011

1 Introduction012

Despite the enormous progress in neural informa-013

tion retrieval (IR) techniques over the last several014

years (Karpukhin et al., 2020; Xiong et al., 2020;015

Dai and Callan, 2019, inter alia), simply using016

BM25 (Robertson et al., 1995; Crestani et al., 1998)017

remains a strong baseline approach (Thakur et al.,018

2021; Sciavolino et al., 2021). This is especially019

the case if it is important that retrieval be fast, or020

that the retrieval method not consume too much021

memory or disk space. Given the effectiveness of022

this rather simple baseline, it is natural to won-023

der whether BM25 might become an even more024

competitive baseline with a bit of additional engi-025

neering.026

One straightforward approach to improving027

BM25 while retaining its favorable properties is028

to do query augmentation — that is, to augment the029

query with additional tokens, thereby improving030

the quality of the retrieved documents. Notably,031

Nogueira and Cho (2017) propose to learn query032

augmentations using reinforcement learning (RL)033

techniques, with recall-at-K as the reward. While034

query augmentations are indeed discrete (consist-035

ing of word tokens), and therefore certainly conge-036

nial to RL methods, we show that augmentations037

can be much more simply learned end-to-end, in038

the course of minimizing a standard contrastive039

loss.040

We find that our augmentation approach im- 041

proves performance, while allowing for retrieval 042

that is as fast, and sometimes even faster, than 043

BM25. Moreover, our approach can be realized 044

by simply modifying the query and IDF vectors (re- 045

spectively), which allows for doing retrieval with 046

standard tools, such as Pyserini (Lin et al., 2021). 047

In particular, unlike many recent sparse approaches 048

to retrieval (e.g., SPLADE (Formal et al., 2021)) 049

we do not need to re-encode the documents. 050

Finally, we find that our approach transfers well 051

between datasets. This is an encouraging find- 052

ing, since transfer can be challenging for neural 053

IR methods, while it is typically not a challenge for 054

BM25. Code for reproducing all models and exper- 055

iments is available at hidden.for.submission. 056

2 Augmenting BM25 057

Recall that BM25 (Robertson et al., 1995; Crestani 058

et al., 1998) scores the compatibility between a 059

query q, viewed as a set of tokens, and a document 060

d, also a set. Given a collection D of N documents, 061

and assuming a vocabulary V , let v ∈ R|V| be the 062

document collection’s inverse document-frequency 063

(IDF) vector, defined as 064

vi = log(
N − |{d ∈ D | wi ∈ d}|+ 0.5

|{d ∈ D | wi ∈ d}|+ 0.5
+ 1), 065

where |{d ∈ D | wi ∈ d}| counts the number of 066

documents in the collection in which word type wi 067

appears. Also let f(d) ∈ R|V| be a document d’s 068

BM25 term-frequency vector, defined as 069

f(d)i =
count(wi, d)(k + 1)

count(wi, d) + k(1− b+ b|d|
M )

, 070

where count(wi, d) counts the number of times 071

word type wi appears in document d, k and b 072

are hyperparameters, and M is the average length 073

of the documents in the collection. Finally, let 074

bow(q) ∈ {0, 1}|V| be the binary bag-of-words 075
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representation of q, where bow(q)i is 1 if wi ∈ q,076

and is 0 otherwise. The BM25 score between q and077

d can then be written as078

BM25(q, d) = (v ⊙ bow(q))⊤f(d),079

where ⊙ is element-wise multiplication.080

Augmenting differentiably To augment BM25’s081

query vector, one can produce an additional set082

of tokens q̂, and then score documents with (v ⊙083

bow(q ∪ q̂))⊤f(d). While q̂ is of course discrete,084

we observe that if we are willing to rescale v085

element-wise by some additional vector c ∈ R|V|,086

we have087

c⊙ v ⊙ bow(q ∪ q̂) = v ⊙ (bow(q) + a)088

for a ∈ R|V|, so long as ai = cibow(q ∪ q̂)i −089

bow(q)i. Moreover, we have that ai ̸= 0 only090

if bow(q ∪ q̂)i = 1. Thus, we can predict a as091

our non-discrete augmentation vector, and score092

documents with093

(v ⊙ (bow(q) + a))⊤f(d),094

and this will be equivalent to scoring with (c⊙v⊙095

bow(q ∪ q̂))⊤f(d) for some c.096

In practice, we use a model to produce both097

the a vector as well as an additional element-wise098

weighting vector w, as parameterized functions099

of the query q. This leads to the following final100

scoring function:101

score(q, d) = (1)102

(w(q)⊙ v ⊙ (bow(q) + a(q)))⊤f(d),103

where we have written w(q) and a(q) to empha-104

size that these are (parameterized) functions of the105

query. This scoring function is differentiable with106

respect to both a(q) and w(q), and we can there-107

fore train the models producing these vectors with108

a standard objective, described below. We also de-109

scribe below how to regularize a(q) to ensure it is110

sparse.111

Retrieval Since ai is nonzero only when q or q̂112

contains wi, at retrieval time we can extract the113

augmented set q ∪ q̂ from a to be our augmented114

query. If we then define a new IDF vector v′ with115

elements v′i = wivi(bow(q)i+ai), we can use stan-116

dard BM25 implementations to retrieve the highest-117

scoring documents using v′ as the IDF vector, and118

this will be equivalent to retrieving documents un-119

der c⊙ v ⊙ bow(q ∪ q̂) for some c.1120

1Some implementations of BM25, such as Pyserini’s, allow
rescaling IDF values directly, which is what we do.

Parameterization We feed a linearized q into 121

a pretrained BERT-like (Devlin et al., 2019) en- 122

coder, after first prepending to it a [CLS] token. 123

Let enc(q)0 ∈ RE be the encoder’s representation 124

of the [CLS] token, and let enc(q)i ∈ RE be the 125

encoder’s representation of the i-th token in the 126

query, for i ≥ 1. We then parameterize a and w as 127

follows: 128

a(q) = ReLU(Wenc(q)0) 129

w(q)i = ReLU(u⊤enc(q)i), 130

where W ∈ R|V|×E and u ∈ RE . 131

Training We train end-to-end, using a standard 132

contrastive loss: 133

Lrank = − log
exp (score(q, d+))∑

d′∈D−∪{d+} exp (score(q, d
′))

, 134

where d+ is a positive document provided by the 135

training dataset, and D− consists of hard negatives 136

mined by BM25 as well as in-batch negatives, fol- 137

lowing the approach of Karpukhin et al. (2020). 138

Sparse regularization Note that in practice, 139

BM25’s retrieval speed depends on how many dis- 140

tinct word types appear in the query. In order to 141

promote retrieval efficiency, we regularize a(q) to 142

ensure it is sparse. We found it beneficial to en- 143

courage sparsity more for frequent words, which 144

are less discriminative. We therefore weight the L1 145

regularization per word by a monotonic function of 146

its document frequency. In particular, we use: 147

Lreg = sqrt(h)⊤a(q), 148

where hi = |{d∈D|wi∈d}|
N , and where the square- 149

root is applied elementwise. Our final training loss 150

is then L = Lrank + λLreg. 151

3 Experiments 152

Datasets We evaluate the retrieval performance 153

of our proposed method on Natural Questions (NQ; 154

Kwiatkowski et al., 2019), EntityQuestions (Sci- 155

avolino et al., 2021), and MSMARCO passage 156

ranking task (Bajaj et al., 2016). We use Trivi- 157

aQA (Joshi et al., 2017) and EntityQuestions to test 158

out-of-distribution retrieval. 159

Experimental Details We initialized all models 160

with distilbert-base-uncased (Sanh et al., 2019), 161

using the Hugging Face implementation (Wolf 162

et al., 2020). On NQ, models were trained with 163
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the AdamW optimizer (Kingma and Ba, 2015;164

Loshchilov and Hutter, 2018), using a learning rate165

of 3e−4, a batch size of 144, and a value for λ166

of 0.1. We trained the models for 45 epochs with167

1 hard negative per sample. We used the same168

settings for training on EntityQuestions but only169

trained for 10 epochs. On MSMARCO, we used170

3e−5 for the learning rate, 144 for the batch size,171

and 0.025 for λ. Models were trained for 2 epochs172

with 4 hard negatives per sample. We trained and173

evaluated our models on a single A6000 GPU.174

Training took about 70 minutes on NQ and 30 min-175

utes on MSMARCO. Documents were tokenized176

by BERT’s WordPiece tokenizer and indexed by177

Pyserini (Lin et al., 2021). We also used Pyserini178

for retrieval at test time.179

Tokenization We emphasize that the perfor-180

mance of standard BM25 depends on the tokeniza-181

tion used. Since we use a distilbert model, we must182

tokenize queries and documents with a WordPiece183

tokenizer (Kudo, 2018; Devlin et al., 2019). Be-184

cause this is not the default tokenization employed185

by Pyserini, we report baseline BM25 numbers us-186

ing both tokenizations. We refer to BM25 with187

the default Pyserini tokenization as “BM25 (Py-188

serini)” and BM25 with the WordPiece tokeniza-189

tion as “BM25 (Ours).”190

3.1 Retrieval Performance191

We report results and latencies on NQ, EntityQues-192

tions, and MSMARCO in Table 1. We measure per-193

query latency using wall-clock time on the same194

machine. On NQ, our method improves 12.1 per-195

centage points in top-5 retrieval accuracy over the196

vanilla BM25 while adding only 43 milliseconds197

in latency. Compared to GAR (Mao et al., 2021),198

an alternative query augmentation method that au-199

toregressively predicts the target document given200

a query, our method retrieves much more quickly201

and performs only slightly worse.202

On MSMARCO and EntityQuestions, our203

method consistently improves over the baseline204

BM25. Notably, our method achieves lower latency205

than BM25 on MSMARCO since our weighting206

allows skipping some terms in the query by setting207

corresponding w(q)i to 0. On EntityQuestions, a208

dataset designed to demonstrate the inconsistency209

of dense retrievers, our method outperforms both210

BM25 and DPR.211

NQ Acc@5 Acc@20 Latency

BM25 (Pyserini) 0.436 0.629 0.099s
BM25 (Ours) 0.430 0.589 0.103s
GAR+BM25 0.609 0.744 5min
DPR 0.668 0.781 30min
SEAL 0.613 0.762 35min
Ours 0.557 0.694 0.146s

EntityQuestions Acc@5 Acc@20 Latency

BM25 (Pyserini) 0.616 0.720 0.060s
BM25 (Ours) 0.526 0.637 0.094s
DPR - 0.684 -
Ours 0.693 0.798 0.669s

MSMARCO NDCG@10 R@100 Latency

BM25 (Pyserini) 0.228 0.658 0.020s
BM25 (Ours) 0.217 0.623 0.031s
SPLADE 0.433 - 1.764s
Ours 0.251 0.687 0.030s

Table 1: Retrieval results on NQ, EntityQues-
tions, and MSMARCO. Non-BM25 baselines include
GAR+BM25 (Mao et al., 2021), DPR (Karpukhin et al.,
2020), and SEAL (Bevilacqua et al., 2022) on NQ, DPR
on EntityQuestions, and SPLADE (Formal et al., 2021)
on MSMARCO. Results and latencies for non-BM25
methods are taken from their respective papers. Latency
for DPR on NQ is reported by Mao et al. (2021); the
latency number is unavailable for DPR on EntityQues-
tions. Latency for SPLADE is measured with the Py-
serini implementation.

3.2 Transfer Results 212

One of the major concerns relating to language- 213

model-assisted retrieval is that it may not generalize 214

well out-of-distribution. To test our method in a 215

transfer setting, we select the best model trained on 216

NQ, and test it on TriviaQA and EntityQuestions 217

without further fine-tuning. We show the results of 218

this experiment in Table 3, where we see that our 219

method generalizes to both datasets, and improves 220

from the baseline by 2-3 percentage points. At the 221

same time, it is clear from comparing the results 222

of BM25 (Pyserini) with BM25 (Ours) that the 223

Pyserini tokenization is helpful for these datasets. 224

We anticipate being able to further improve given a 225

pretrained model using the preferred tokenization, 226

which we leave to future work. 227

3.3 Ablation Study 228

In Table 2 we present the results of ablating various 229

aspects of our approach on the NQ dataset. Our full 230

setting achieves the best balance between accuracy 231

and efficiency. Compared to a uniform L1 penalty, 232

our L1 penalty weighted by document frequency 233

achieves lower latency while predicting augmen- 234
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Accuracy@5 Accuracy@20 Latency Augmentation Length

Full Setting 0.557 0.694 0.146 12.334
- w/o Weighted L1 0.562 0.704 0.268 15.211
- w/o Weight 0.545 0.683 0.269 19.165
- w/o BM25 Scoring 0.487 0.635 0.225 31.861
- w/o BM25 Scoring & Weighted L1 0.525 0.670 0.377 21.794

Table 2: Ablation experiments on NQ. From top to bottom, we consider our approach with a uniform weighting
of the L1 penalty (rather than by word frequency), without the elementwise weight vector w, using just a bag-of-
words rather than BM25-style query and document representations, and with both uniform L1 and bag-of-words
representations.

Accuracy@5 Accuracy@20

TriviaQA

BM25 (Pyserini) 0.677 0.773
BM25 (Ours) 0.636 0.742
Ours 0.662 0.755

EntityQuestions

BM25 (Pyserini) 0.616 0.720
BM25 (Ours) 0.526 0.637
Ours 0.542 0.656

Table 3: Results of our approach trained on NQ and
then transferred to TriviaQA (top) and EntityQuestions
(bottom).

tations of similar lengths. This suggests that the235

model is augmenting with rarer terms, thereby re-236

ducing the total number of documents in the in-237

verted index and increasing speed. We also see that238

the additional weighting w is helpful. Finally, we239

check whether using BM25-style query and doc-240

ument vectors, rather than simple bag-of-words241

vectors, is important, by replacing the scoring func-242

tion (1) with the following:243

(w(q)⊙ (bow(q) + a(q)))⊤bow(d).244

We observe that this also decreases performance.245

4 Related Work246

While recent dense retrievers have shown strong re-247

trieval performance (Reimers and Gurevych, 2019;248

Karpukhin et al., 2020), their high latencies limit249

their application to first-stage retrieval. To im-250

prove efficiency, late-interaction approaches have251

been proposed (Khattab and Zaharia, 2020; Gao252

et al., 2021; Formal et al., 2021). Here, docu-253

ments are first retrieved with an inverted-index and254

then scored by aggregating term embeddings pre-255

computed while indexing. Although such meth-256

ods reduce retrieval latencies, the need to store257

dense representations of documents significantly258

increases index sizes (Thakur et al., 2021).259

Document expansion methods, such as 260

Doc2query (Nogueira et al., 2019; Nogueira and 261

Lin, 2019), allow indexing and retrieval using 262

standard BM25. Nogueira and Lin (2019) use 263

a language model to predict possible queries 264

given a document; augmented documents are then 265

constructed by appending these queries. By adding 266

to the document, this approach addresses the 267

term mismatching issue affecting sparse retrieval 268

methods. However, this approach also requires 269

running a language model over every document, 270

which is expensive, especially if new documents 271

are added incrementally. It is also potentially 272

infeasible to do this when documents are very long. 273

In contrast, we restrict our method to only perform 274

neural operations on the queries, which are usually 275

much shorter than documents. 276

To the best of our knowledge, only a few recent 277

methods meet this requirement of only modifying 278

queries. Nogueira and Cho (2017) use reinforce- 279

ment learning to predict discrete augmentations. 280

GAR (Mao et al., 2021) and SEAL (Bevilacqua 281

et al., 2022) train language models to generate tar- 282

get documents or n-grams. Our approach differs 283

from these methods by optimizing for BM25 re- 284

trieval in an end-to-end fashion, and in being sig- 285

nificantly faster. 286

5 Conclusion 287

We propose a novel approach for learning to aug- 288

ment BM25 end-to-end with a language model. 289

Our method improves over BM25 on three differ- 290

ent datasets while retaining its efficiency. Addi- 291

tionally, we show that such improvements are able 292

to generalize out-of-distribution. With its simple 293

formulation, our method can be easily integrated 294

into existing sparse retrieval frameworks. And we 295

believe it might serve as a stronger sparse baseline 296

for future work in retrieval. 297
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Limitations298

As mentioned in Sec. 3.2, tokenization methods299

heavily influence retrieval performance. This is a300

limitation both of BM25 and of our modification of301

it. In its current form, there are no straightforward302

solutions that allow our method to augment queries303

with words rather than the subword tokens of the304

pretrained tokenizer. Thus, in situations where305

word-tokenization is important for BM25 (some of306

which appear in Table 1), using our method would307

require pre-training a word- rather than subword-308

based model, which may be difficult.309

Relatedly, since our method makes fundamental310

use of a pretrained model as the backbone, it suf-311

fers from the same problems afflicting pretrained312

models, including susceptibility to misinformation313

and bias, and requiring significant computational314

resources.315

Ethics Statement316

As our approach attempts to improve retrieval tech-317

nology, the ethical considerations are similar to318

those of other retrieval technologies, especially319

those utilizing large pretrained language models.320

In particular, there is always a risk that the docu-321

ments retrieved by our approach will be influenced322

by errors or biases in the underlying model, and it323

is necessary to ensure this does not happen before324

deployment. Because our augmentations are token-325

based, rather than based on dense representations, it326

should be slightly easier to manually check whether327

augmentations are problematic. We also empha-328

size that our approach is relatively undemanding329

computationally, which we believe to be a positive330

feature.331
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