BM2S5 Query Augmentation Learned End-to-End

Anonymous ACL submission

Abstract

Given BM25’s enduring competitiveness as an
information retrieval baseline, we investigate to
what extent it can be even further improved by
augmenting and re-weighting its sparse query-
vector representation. We propose an approach
to learning an augmentation and a re-weighting
end-to-end, and we find that our approach im-
proves performance over BM25 while retaining
its speed. We furthermore find that the learned
augmentations and re-weightings transfer well
to unseen datasets.

1 Introduction

Despite the enormous progress in neural informa-
tion retrieval (IR) techniques over the last several
years (Karpukhin et al., 2020; Xiong et al., 2020;
Dai and Callan, 2019, inter alia), simply using
BM25 (Robertson et al., 1995; Crestani et al., 1998)
remains a strong baseline approach (Thakur et al.,
2021; Sciavolino et al., 2021). This is especially
the case if it is important that retrieval be fast, or
that the retrieval method not consume too much
memory or disk space. Given the effectiveness of
this rather simple baseline, it is natural to won-
der whether BM25 might become an even more
competitive baseline with a bit of additional engi-
neering.

One straightforward approach to improving
BM25 while retaining its favorable properties is
to do query augmentation — that is, to augment the
query with additional tokens, thereby improving
the quality of the retrieved documents. Notably,
Nogueira and Cho (2017) propose to learn query
augmentations using reinforcement learning (RL)
techniques, with recall-at- K as the reward. While
query augmentations are indeed discrete (consist-
ing of word tokens), and therefore certainly conge-
nial to RL methods, we show that augmentations
can be much more simply learned end-to-end, in
the course of minimizing a standard contrastive
loss.

We find that our augmentation approach im-
proves performance, while allowing for retrieval
that is as fast, and sometimes even faster, than
BM25. Moreover, our approach can be realized
by simply modifying the query and IDF vectors (re-
spectively), which allows for doing retrieval with
standard tools, such as Pyserini (Lin et al., 2021).
In particular, unlike many recent sparse approaches
to retrieval (e.g., SPLADE (Formal et al., 2021))
we do not need to re-encode the documents.

Finally, we find that our approach transfers well
between datasets. This is an encouraging find-
ing, since transfer can be challenging for neural
IR methods, while it is typically not a challenge for
BM25. Code for reproducing all models and exper-
iments is available at hidden. for.submission.

2 Augmenting BM25

Recall that BM25 (Robertson et al., 1995; Crestani
et al., 1998) scores the compatibility between a
query ¢, viewed as a set of tokens, and a document
d, also a set. Given a collection D of N documents,
and assuming a vocabulary V, let v € RV be the
document collection’s inverse document-frequency
(IDF) vector, defined as

N—-|{deD|w; €d}+0.5
H{deD|w; €d}|+05

v; = log(+1),
where [{d € D | w; € d}| counts the number of
documents in the collection in which word type w;
appears. Also let f(d) € RIVI be a document d’s
BM25 term-frequency vector, defined as

count(w;, d)(k + 1)
f(d)l = bld|~
count(w;, d) + k(1 — b+ 57)

where count(w;, d) counts the number of times
word type w; appears in document d, k£ and b
are hyperparameters, and M is the average length
of the documents in the collection. Finally, let
bow(q) € {0,1}VI be the binary bag-of-words

hidden.for.submission

representation of ¢, where bow(q); is 1 if w; € ¢,
and is 0 otherwise. The BM25 score between ¢ and
d can then be written as

BM25(g,d) = (v © bow(q)) T£(d),
where © is element-wise multiplication.

Augmenting differentiably To augment BM25’s
query vector, one can produce an additional set
of tokens ¢, and then score documents with (v ®
bow(q U §)) " f(d). While is of course discrete,
we observe that if we are willing to rescale v
element-wise by some additional vector ¢ € RV,
we have

cOVvObow(qUg) =vo (bow(q) + a)

for a € RIVI, so long as a; = ¢;bow(q U §); —
bow(g);. Moreover, we have that a; # 0 only
if bow(q U ¢); = 1. Thus, we can predict a as
our non-discrete augmentation vector, and score
documents with

(v © (bow(q) +a)) ' £(d),

and this will be equivalent to scoring with (c ®v ®
bow(q U §)) " f(d) for some c.

In practice, we use a model to produce both
the a vector as well as an additional element-wise
weighting vector w, as parameterized functions
of the query ¢. This leads to the following final
scoring function:

score(q,d) = (1)
(w(q) © v o (bow(q) +a(q))) ' £(d),

where we have written w(q) and a(q) to empha-
size that these are (parameterized) functions of the
query. This scoring function is differentiable with
respect to both a(q) and w(q), and we can there-
fore train the models producing these vectors with
a standard objective, described below. We also de-
scribe below how to regularize a(q) to ensure it is
sparse.

Retrieval Since a; is nonzero only when g or ¢
contains w;, at retrieval time we can extract the
augmented set ¢ U ¢ from a to be our augmented
query. If we then define a new IDF vector v/ with
elements v, = w;v;(bow(q);+a;), we can use stan-
dard BM25 implementations to retrieve the highest-
scoring documents using v’ as the IDF vector, and
this will be equivalent to retrieving documents un-
der ¢ ® v ® bow(q U §) for some c.!

!Some implementations of BM25, such as Pyserini’s, allow
rescaling IDF values directly, which is what we do.

Parameterization We feed a linearized ¢ into
a pretrained BERT-like (Devlin et al., 2019) en-
coder, after first prepending to it a [CLS] token.
Let enc(q)o € R” be the encoder’s representation
of the [CLS] token, and let enc(q); € R¥ be the
encoder’s representation of the ¢-th token in the
query, for ¢ > 1. We then parameterize a and w as
follows:

a(q) = ReLU(W enc(q)o)
w(q); = ReLU(uTenc(q)i),

where W € RIVIXE and u € RE.

Training We train end-to-end, using a standard
contrastive loss:

exp (score(q,d™))
> aep-ufd+} €XPp (score(q, d')) ’

Lrank = — log

where d* is a positive document provided by the
training dataset, and D~ consists of hard negatives
mined by BM25 as well as in-batch negatives, fol-
lowing the approach of Karpukhin et al. (2020).

Sparse regularization Note that in practice,
BM25’s retrieval speed depends on how many dis-
tinct word types appear in the query. In order to
promote retrieval efficiency, we regularize a(q) to
ensure it is sparse. We found it beneficial to en-
courage sparsity more for frequent words, which
are less discriminative. We therefore weight the L1
regularization per word by a monotonic function of
its document frequency. In particular, we use:

Lyeg = sqrt(h)Ta(q),
where h; = w, and where the square-

root is applied elementwise. Our final training loss
isthen £ = Ly gni + ALlpeg-

3 Experiments

Datasets We evaluate the retrieval performance
of our proposed method on Natural Questions (NQ;
Kwiatkowski et al., 2019), EntityQuestions (Sci-
avolino et al., 2021), and MSMARCO passage
ranking task (Bajaj et al., 2016). We use Trivi-
aQA (Joshi et al., 2017) and EntityQuestions to test
out-of-distribution retrieval.

Experimental Details We initialized all models
with distilbert-base-uncased (Sanh et al., 2019),
using the Hugging Face implementation (Wolf
et al., 2020). On NQ, models were trained with

the AdamW optimizer (Kingma and Ba, 2015;
Loshchilov and Hutter, 2018), using a learning rate
of 3e%, a batch size of 144, and a value for A
of 0.1. We trained the models for 45 epochs with
1 hard negative per sample. We used the same
settings for training on EntityQuestions but only
trained for 10 epochs. On MSMARCO, we used
3e~5 for the learning rate, 144 for the batch size,
and 0.025 for A\. Models were trained for 2 epochs
with 4 hard negatives per sample. We trained and
evaluated our models on a single A6000 GPU.
Training took about 70 minutes on NQ and 30 min-
utes on MSMARCO. Documents were tokenized
by BERT’s WordPiece tokenizer and indexed by
Pyserini (Lin et al., 2021). We also used Pyserini
for retrieval at test time.

Tokenization We emphasize that the perfor-
mance of standard BM25 depends on the tokeniza-
tion used. Since we use a distilbert model, we must
tokenize queries and documents with a WordPiece
tokenizer (Kudo, 2018; Devlin et al., 2019). Be-
cause this is not the default tokenization employed
by Pyserini, we report baseline BM25 numbers us-
ing both tokenizations. We refer to BM25 with
the default Pyserini tokenization as “BM25 (Py-
serini)” and BM25 with the WordPiece tokeniza-
tion as “BM25 (Ours).”

3.1 Retrieval Performance

We report results and latencies on NQ, EntityQues-
tions, and MSMARCO in Table 1. We measure per-
query latency using wall-clock time on the same
machine. On NQ, our method improves 12.1 per-
centage points in top-5 retrieval accuracy over the
vanilla BM25 while adding only 43 milliseconds
in latency. Compared to GAR (Mao et al., 2021),
an alternative query augmentation method that au-
toregressively predicts the target document given
a query, our method retrieves much more quickly
and performs only slightly worse.

On MSMARCO and EntityQuestions, our
method consistently improves over the baseline
BM25. Notably, our method achieves lower latency
than BM25 on MSMARCO since our weighting
allows skipping some terms in the query by setting
corresponding w(q); to 0. On EntityQuestions, a
dataset designed to demonstrate the inconsistency
of dense retrievers, our method outperforms both
BM25 and DPR.

NQ Acc@5 Acc@20 Latency
BM25 (Pyserini) 0.436 0.629 0.099s
BM25 (Ours) 0.430 0.589 0.103s
GAR+BM25 0.609 0.744 Smin
DPR 0.668 0.781 30min
SEAL 0.613 0.762 35min
Ours 0.557 0.694 0.146s
EntityQuestions Acc@5 Acc@20 Latency
BM25 (Pyserini) 0.616 0.720 0.060s
BM25 (Ours) 0.526 0.637 0.094s
DPR - 0.684 -
Ours 0.693 0.798 0.669s
MSMARCO NDCG@10 R@100 Latency
BM25 (Pyserini) 0.228 0.658 0.020s
BM25 (Ours) 0.217 0.623 0.031s
SPLADE 0.433 - 1.764s
Ours 0.251 0.687 0.030s
Table 1: Retrieval results on NQ, EntityQues-

tions, and MSMARCO. Non-BM25 baselines include
GAR+BM25 (Mao et al., 2021), DPR (Karpukhin et al.,
2020), and SEAL (Bevilacqua et al., 2022) on NQ, DPR
on EntityQuestions, and SPLADE (Formal et al., 2021)
on MSMARCO. Results and latencies for non-BM25
methods are taken from their respective papers. Latency
for DPR on NQ is reported by Mao et al. (2021); the
latency number is unavailable for DPR on EntityQues-
tions. Latency for SPLADE is measured with the Py-
serini implementation.

3.2 Transfer Results

One of the major concerns relating to language-
model-assisted retrieval is that it may not generalize
well out-of-distribution. To test our method in a
transfer setting, we select the best model trained on
NQ, and test it on TriviaQA and EntityQuestions
without further fine-tuning. We show the results of
this experiment in Table 3, where we see that our
method generalizes to both datasets, and improves
from the baseline by 2-3 percentage points. At the
same time, it is clear from comparing the results
of BM25 (Pyserini) with BM25 (Ours) that the
Pyserini tokenization is helpful for these datasets.
We anticipate being able to further improve given a
pretrained model using the preferred tokenization,
which we leave to future work.

3.3 Ablation Study

In Table 2 we present the results of ablating various
aspects of our approach on the NQ dataset. Our full
setting achieves the best balance between accuracy
and efficiency. Compared to a uniform L1 penalty,
our L1 penalty weighted by document frequency
achieves lower latency while predicting augmen-

Accuracy@5

Accuracy@2(0 Latency Augmentation Length

Full Setting 0.557
- w/o Weighted L1 0.562
- w/o Weight 0.545
- w/o BM25 Scoring 0.487
- w/o BM25 Scoring & Weighted L1 0.525

0.694 0.146 12.334
0.704 0.268 15.211
0.683 0.269 19.165
0.635 0.225 31.861
0.670 0.377 21.794

Table 2: Ablation experiments on NQ. From top to bottom, we consider our approach with a uniform weighting
of the L1 penalty (rather than by word frequency), without the elementwise weight vector w, using just a bag-of-
words rather than BM25-style query and document representations, and with both uniform L1 and bag-of-words

representations.
Accuracy@5 Accuracy @20

TriviaQA

BM25 (Pyserini) 0.677 0.773
BM25 (Ours) 0.636 0.742
Ours 0.662 0.755
EntityQuestions

BM25 (Pyserini) 0.616 0.720
BM25 (Ours) 0.526 0.637
Ours 0.542 0.656

Table 3: Results of our approach trained on NQ and
then transferred to TriviaQA (top) and EntityQuestions
(bottom).

tations of similar lengths. This suggests that the
model is augmenting with rarer terms, thereby re-
ducing the total number of documents in the in-
verted index and increasing speed. We also see that
the additional weighting w is helpful. Finally, we
check whether using BM25-style query and doc-
ument vectors, rather than simple bag-of-words
vectors, is important, by replacing the scoring func-
tion (1) with the following:

(w(q) © (bow(q) +a(q))) bow(d).
We observe that this also decreases performance.

4 Related Work

While recent dense retrievers have shown strong re-
trieval performance (Reimers and Gurevych, 2019;
Karpukhin et al., 2020), their high latencies limit
their application to first-stage retrieval. To im-
prove efficiency, late-interaction approaches have
been proposed (Khattab and Zaharia, 2020; Gao
et al., 2021; Formal et al., 2021). Here, docu-
ments are first retrieved with an inverted-index and
then scored by aggregating term embeddings pre-
computed while indexing. Although such meth-
ods reduce retrieval latencies, the need to store
dense representations of documents significantly
increases index sizes (Thakur et al., 2021).

Document expansion methods, such as
Doc2query (Nogueira et al., 2019; Nogueira and
Lin, 2019), allow indexing and retrieval using
standard BM25. Nogueira and Lin (2019) use
a language model to predict possible queries
given a document; augmented documents are then
constructed by appending these queries. By adding
to the document, this approach addresses the
term mismatching issue affecting sparse retrieval
methods. However, this approach also requires
running a language model over every document,
which is expensive, especially if new documents
are added incrementally. It is also potentially
infeasible to do this when documents are very long.
In contrast, we restrict our method to only perform
neural operations on the queries, which are usually
much shorter than documents.

To the best of our knowledge, only a few recent
methods meet this requirement of only modifying
queries. Nogueira and Cho (2017) use reinforce-
ment learning to predict discrete augmentations.
GAR (Mao et al., 2021) and SEAL (Bevilacqua
et al., 2022) train language models to generate tar-
get documents or n-grams. Our approach differs
from these methods by optimizing for BM25 re-
trieval in an end-to-end fashion, and in being sig-
nificantly faster.

5 Conclusion

We propose a novel approach for learning to aug-
ment BM25 end-to-end with a language model.
Our method improves over BM25 on three differ-
ent datasets while retaining its efficiency. Addi-
tionally, we show that such improvements are able
to generalize out-of-distribution. With its simple
formulation, our method can be easily integrated
into existing sparse retrieval frameworks. And we
believe it might serve as a stronger sparse baseline
for future work in retrieval.

Limitations

As mentioned in Sec. 3.2, tokenization methods
heavily influence retrieval performance. This is a
limitation both of BM25 and of our modification of
it. In its current form, there are no straightforward
solutions that allow our method to augment queries
with words rather than the subword tokens of the
pretrained tokenizer. Thus, in situations where
word-tokenization is important for BM25 (some of
which appear in Table 1), using our method would
require pre-training a word- rather than subword-
based model, which may be difficult.

Relatedly, since our method makes fundamental
use of a pretrained model as the backbone, it suf-
fers from the same problems afflicting pretrained
models, including susceptibility to misinformation
and bias, and requiring significant computational
resources.

Ethics Statement

As our approach attempts to improve retrieval tech-
nology, the ethical considerations are similar to
those of other retrieval technologies, especially
those utilizing large pretrained language models.
In particular, there is always a risk that the docu-
ments retrieved by our approach will be influenced
by errors or biases in the underlying model, and it
is necessary to ensure this does not happen before
deployment. Because our augmentations are token-
based, rather than based on dense representations, it
should be slightly easier to manually check whether
augmentations are problematic. We also empha-
size that our approach is relatively undemanding
computationally, which we believe to be a positive
feature.

References

Payal Bajaj, Daniel Campos, Nick Craswell, Li Deng,
Jianfeng Gao, Xiaodong Liu, Rangan Majumder,
Andrew McNamara, Bhaskar Mitra, Tri Nguyen,
et al. 2016. Ms marco: A human generated ma-
chine reading comprehension dataset. arXiv preprint
arXiv:1611.09268.

Michele Bevilacqua, Giuseppe Ottaviano, Patrick Lewis,
Scott Yih, Sebastian Riedel, and Fabio Petroni. 2022.
Autoregressive search engines: Generating substrings
as document identifiers. In Advances in Neural Infor-
mation Processing Systems.

Fabio Crestani, Mounia Lalmas, Cornelis J Van Rijs-
bergen, and Iain Campbell. 1998. “is this document

relevant?. .. probably” a survey of probabilistic mod-
els in information retrieval. ACM Computing Surveys
(CSUR), 30(4):528-552.

Zhuyun Dai and Jamie Callan. 2019. Context-aware
sentence/passage term importance estimation for first
stage retrieval. arXiv preprint arXiv:1910.10687.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Thibault Formal, Carlos Lassance, Benjamin Pi-
wowarski, and Stéphane Clinchant. 2021. Splade
v2: Sparse lexical and expansion model for informa-
tion retrieval. arXiv preprint arXiv:2109.10086.

Luyu Gao, Zhuyun Dai, and Jamie Callan. 2021. COIL:
Revisit exact lexical match in information retrieval
with contextualized inverted list. In Proceedings of
the 2021 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 3030-3042,
Online. Association for Computational Linguistics.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke
Zettlemoyer. 2017. TriviaQA: A large scale distantly
supervised challenge dataset for reading comprehen-
sion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1601-1611, Vancouver,
Canada. Association for Computational Linguistics.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqgi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for open-
domain question answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 6769-6781,
Online. Association for Computational Linguistics.

Omar Khattab and Matei Zaharia. 2020. Colbert: Effi-
cient and effective passage search via contextualized
late interaction over bert. In Proceedings of the 43rd
International ACM SIGIR conference on research

and development in Information Retrieval, pages 39—
48.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Taku Kudo. 2018. Subword regularization: Improv-
ing neural network translation models with multiple
subword candidates. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 66-75,

https://openreview.net/forum?id=Z4kZxAjg8Y
https://openreview.net/forum?id=Z4kZxAjg8Y
https://openreview.net/forum?id=Z4kZxAjg8Y
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/2021.naacl-main.241
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/P17-1147
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
https://doi.org/10.18653/v1/2020.emnlp-main.550
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007
https://doi.org/10.18653/v1/P18-1007

Melbourne, Australia. Association for Computational
Linguistics.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natural
Questions: A Benchmark for Question Answering
Research. Transactions of the Association for Com-
putational Linguistics, 7:453—466.

Jimmy Lin, Xueguang Ma, Sheng-Chieh Lin, Jheng-
Hong Yang, Ronak Pradeep, and Rodrigo Nogueira.
2021. Pyserini: A Python toolkit for reproducible
information retrieval research with sparse and dense
representations. In Proceedings of the 44th Annual
International ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR
2021), pages 2356-2362.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations.

Yuning Mao, Pengcheng He, Xiaodong Liu, Yelong
Shen, Jianfeng Gao, Jiawei Han, and Weizhu Chen.
2021. Generation-augmented retrieval for open-
domain question answering. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 4089—4100, Online. As-
sociation for Computational Linguistics.

Rodrigo Nogueira and Kyunghyun Cho. 2017. Task-
oriented query reformulation with reinforcement
learning. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 574-583, Copenhagen, Denmark. Association
for Computational Linguistics.

Rodrigo Nogueira and Jimmy Lin. 2019. From
doc2query to docTTTTTquery. Online preprint.

Rodrigo Nogueira, Wei Yang, Jimmy Lin, and
Kyunghyun Cho. 2019. Document expansion by
query prediction. arXiv preprint arXiv:1904.08375.

Nils Reimers and Iryna Gurevych. 2019. Sentence-
BERT: Sentence embeddings using Siamese BERT-
networks. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
3982-3992, Hong Kong, China. Association for Com-
putational Linguistics.

Stephen E Robertson, Steve Walker, Susan Jones,
Micheline M Hancock-Beaulieu, Mike Gatford, et al.
1995. Okapi at trec-3. Nist Special Publication Sp,
109:109.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version
of bert: smaller, faster, cheaper and lighter. ArXiv,
abs/1910.01108.

Christopher Sciavolino, Zexuan Zhong, Jinhyuk Lee,
and Dangi Chen. 2021. Simple entity-centric ques-
tions challenge dense retrievers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 6138—6148, Online
and Punta Cana, Dominican Republic. Association
for Computational Linguistics.

Nandan Thakur, Nils Reimers, Andreas Riicklé, Ab-
hishek Srivastava, and Iryna Gurevych. 2021. BEIR:
A heterogeneous benchmark for zero-shot evaluation
of information retrieval models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38—45, Online. Association
for Computational Linguistics.

Lee Xiong, Chenyan Xiong, Ye Li, Kwok-Fung Tang,
Jialin Liu, Paul N Bennett, Junaid Ahmed, and
Arnold Overwijk. 2020. Approximate nearest neigh-
bor negative contrastive learning for dense text re-
trieval. In International Conference on Learning
Representations.

A Dataset Statistics

Dataset Train Dev Test
Natural Questions 58,880 8,757 3,610
EntityQuestions 176,560 22,068 22,075
TriviaQA 60,413 8,837 11,313
MSMARCO 502,939 6,980 -

Table 4: Number of train/dev/test queries on each
dataset. On MSMARCO, we follow the same approach
as the previous work that reports the dev set perfor-
mance of BEIR (Thakur et al., 2021).

B License

All packages and datasets used in our study are
released with Apache-2.0 or MIT licenses.

https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/2021.acl-long.316
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://doi.org/10.18653/v1/D17-1061
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://cs.uwaterloo.ca/~jimmylin/publications/Nogueira_Lin_2019_docTTTTTquery-v2.pdf
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/D19-1410
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://doi.org/10.18653/v1/2021.emnlp-main.496
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://openreview.net/forum?id=wCu6T5xFjeJ
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6

