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ABSTRACT

In this paper, we study the reasoning capabilities of language models (LMs)
with syllogisms, a basic logical deductive system. By composing syllogisms, we
present a pipeline for automatically generating logical questions without any hu-
man annotation. Compare to previous benchmarks on logical reasoning, our work
introduces a new set of deduction rules by employing syllogism. Despite its lim-
ited set of deduction rules, our results show that even the largest GPT-3 is inad-
equate in answering simple logical questions by following syllogistic rules. Fur-
thermore, by fine-tuning a pretrained language model, we demonstrate empirically
that LMs could learn the rules of syllogism and apply them to out-of-distribution
samples. Last, by pre-training an LM on our synthetic data, we improve its ac-
curacy by 3% on a dataset of human-written logical questions, compared to a
baseline model finetuned only on the downstream dataset. In a zero-shot setting,
our pretrained model improves by 15% over a random baseline. Our results sug-
gest a new possibility of unsupervised learning to reason. Code is available at
https://github.com/chenyn66/fol_pretrain/

1 INTRODUCTION

Language models (LMs), e.g., BERT and GPT (Devlin et al., 2019; Brown et al., 2020), have
achieved tremendous success in many NLP tasks, such as text classification, semantic parsing, and
reading comprehension. However, existing pretrained LMs focus on the language modeling objec-
tives with little attention to reasoning capabilities. As a result, in tasks that involve complex and
formal reasoning, LMs still fall far behind expectations.

One of such tasks is logical reasoning, the process of applying rigorous logic to draw conclusions
from given information. Many studies have provided benchmarks for logical reasoning (Liu et al.,
2020; Yu et al., 2020; Clark et al., 2020; Tian et al., 2021). However, some of them do not evaluate
logical reasoning independently from other types of reasoning problems Liu et al. (2020); Yu et al.
(2020). On the other hand, benchmarks specifically designed for logical reasoning (Clark et al.,
2020; Tian et al., 2021) are usually constructed with pre-defined logical templates in first-order logic
(FOL), limiting the diversity in the syntax of underlying logical deduction structure. Additionally,
those templates are arbitrarily defined without a formal guideline on how to construct meaningful
logical questions.

Therefore, we propose a framework for synthesizing logical questions based on syllogism, a classic
deductive system. Each syllogism involves two propositions and one conclusion. Although its
expressive power is limited compared to FOL, syllogism introduces new deduction rules to previous
logical reasoning benchmarks (Sec. 3.2). Additionally, as the set of all logically distinct syllogisms
is finite and enumerable, this system provides a formal framework for constructing non-trivial logical
questions. With syllogism, we are able to clearly define the problem space of synthetic questions.

Additionally, high-quality logical reasoning datasets (Yu et al., 2020; Liu et al., 2020; Han et al.,
2022) are difficult and expensive to acquire. We explore the possibility of learning logical deduc-
tion with unsupervised learning. Specifically, we leverage the compositionality of symbolic logical
systems, to generate a large number of training problems with arbitrary complexity. With these
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synthetic questions, LMs could learn to reason during pre-training and transfer such ability to the
downstream application.

We summarize our key findings as follows:

1. Large Language Models are inadequate in rigorous reasoning: GPT-3 only correctly
answers 46 out of 48 questions in our simplest test case, where all rules are presented in
the prompt and test premises are identical to those in the prompt. (Sec. 4.1)

2. LMs can learn to reason with the rules of syllogism: With fine-tuning, an LM can
achieve near-perfect performance on both in-distribution and out-of-distribution samples.
We further show that such ability is robust to different natural language representations.
(Sec. 4.2)

3. Pre-training can improve downstream logical reasoning performance: We show that
per-training with our synthetic questions improves the downstream accuracy by 3% in a
finetuned setting and 15% in a zero-shot setting. (Sec. 4.3)

2 RELATED WORK

2.1 LOGICAL REASONING BENCHMARK

Recently, there is an increasing research interest in diagnosing logical reasoning ability. ReClor
(Yu et al., 2020) and LogiQA (Liu et al., 2020) both used multi-choice questions from graduate
admission exams. These questions involve realistic logical reasoning. However, these datasets
do not disentangle logical reasoning from other types of reasoning problems, e.g., commonsense
reasoning, causing them unsuitable for studying logical reasoning independently. FOLIO (Han et al.,
2022) is specifically built with FOL questions written by human experts. However, this dataset is
limited in size with only 1435 samples.

Meanwhile, other benchmarks have been proposed by automatically generating logical questions
Clark et al. (2020); Tian et al. (2021); Saeed et al. (2021). For example, Clark et al. (2020) focused
on a specific set of FOL expressions, namely, conjunctive implication with negation. Tian et al.
(2021) used pre-defined templates as base logic expressions to compose natural language inference
problems involving logic. Some other studies focused on investigating the question that if LMs
are actually reasoning. Zhang et al. (2022) showed that models may take shortcuts by exploiting
statistical patterns. Gubelmann & Handschuh (2022) demonstrated that LMs may rely on shallow
heuristics to perform logical reasoning. Although this study also used syllogism, it is limited to a
small subset as its main purpose differs from ours. To the best of our knowledge, our work is the
first extensive study of LMs’ reasoning performance on syllogism.

2.2 REASONING VIA PRE-TRAINING

Recent work has attempted to improve the reasoning ability of LMs by constructing input con-
text with richer dependencies. Yasunaga et al. (2022) leveraged hyperlinks and references from
Wikipedia to improve the model’s multi-hop reasoning ability. Deng et al. (2021) constructed a self-
supervised multi-hop reasoning task with distant supervision. Both methods focus on improving
multi-hop reasoning performance, the ability to aggregate information from multiple pieces of evi-
dence. Instead, we focus on logical reasoning skills in our study. Pi et al. (2022) shared a similar idea
with us by constructing training data via abstract logical programs. However, their input context is
in abstract symbols, e.g., p — ¢, which is unrealistic. Instead, we translate our questions into natural
language. Jiao et al. (2022); Ouyang et al. (2022) formed input context by constructing semantic
graphs from documents. This approach essentially differs from ours, which is based on syllogism.
Last, Betz et al. (2021) used syllogistic arguments to improve the pre-training of autoregressive LM
and tested on downstream text generation tasks. Instead, our study focuses on the performance of
logical reasoning tasks.
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3 APPROACH

3.1 TASK DEFINITION

To evaluate the logical reasoning ability of LMs, we developed a pipeline to automatically generate
logical questions by composing syllogisms. Each problem is a triple (context, conclusion, answer),
where both context are premises, conclusion is the logical statement to verify, and answer is either
true if the conclusion is entailed by the context or false if the conclusion is a contradiction. Context
and conclusion are expressed in natural language by verbalizing with templates. As we only focus
on logical deduction, we construct our data such that the conclusion can be determined with the
information presented in the context only. Doing so disentangles logical reasoning from other types
of reasoning problems, e.g. commonsense reasoning, which involves world knowledge.

3.2 SYLLOGISM

Syllogism is a common deductive reasoning system first defined by Aristotle. A syllogism contains
two premises, one conclusion, and three terms whose relations are expressed by the premises. Each
premise and conclusion states one of four possible relations between two terms: All A are B (A),
No A is B (E), Some A are B (I), Some A are not B (0)'. There are 256 logically distant syllogisms
and 24 of them are valid (Lehman, 1973). Our methods use all 24 valid syllogisms as the basis for
constructing questions. In Table 1, we show two examples of valid syllogisms:

All Aare B Some A are not B
All C are A All A are C
AllCare B  Some C are not B

Table 1: Two valid syllogisms. The first two rows are the two premises and the last row is the
conclusion entailed by the premises.

Multiple syllogisms can be composed into a more complex reasoning problem by using the con-
clusion of the previous syllogism as one premise for the later syllogism. For example, the two
syllogisms in Table | can be composed into: All A are B, All C are A, Some C are D, therefore Some
B are not D. We say a problem has depth 4 if it is composed of d syllogisms.

Note that syllogism is a proper subset of first-order logic, as all four possible premises can
be expressed in FOL form: Vz(A(z) — B(z)), Ya(A(x) — —-B(z)), Jz(A(x) A B(x)),
Jx(A(x) A —=B(z)). Therefore, our work can complement previous studies on LM’s ability of
FOL reasoning by introducing a new set of distinct deduction rules. To the best of our knowledge,
all previous benchmarks do not contain syllogism.

3.3 DATA GENERATION

In this section, we describe our pipeline of translating syllogism symbols into natural language.
Our pipeline is completely automatic by employing hand-crafted templates. Two steps are involved
to verbalize a syllogism 1) connective translation and 2) predicate translation. First, to convert
logical relations, we write templates with placeholders for the predicates. Then, we sample from
a large vocabulary list to substitute the placeholders. For negative samples, we simply negate the
conclusions, as negations of syllogism relations are also syllogism relations”. To evaluate the effect
of semantics on reasoning performance, we designed two different types of templates for translation.
We refer to them as NOUN template and ADJ template accordingly. In Table 2 we show two
different translations of the same underlying logical question.

NOUN template follows the classic interpretation of syllogism, where each term is an entity. Table |
show one example of this template. We write 33 templates in total with at least 8 for each relation.
For example, an alternative interpretation for All A are B could be A is always B. To substitute
the entities, we sample from a preconstructed vocabulary of size 1000 containing nouns and noun
phrases. We ignore the semantics of terms. One example of generated questions is:

"Letters in parentheses are shorthands for each relation.
?For example, the negation All A are B is Some A are not B.



COMPSCI 572.01 Final Project Report

NOUN ADJ
A subset of fire is owner.

All fire is carton of milk.

If something is carton of milk,
then it is not reputation.
Sometimes owner is not reputation. Someone is intellectual and not glamorous.

Thrilling and intellectual person exists.
Everyone who is thrilling is soulless.
For all people, if he is soulless then he is not glamorous.

Table 2: An example question of depth 2 generated by our pipeline, verbalized by two different
templates

Instruction Prompt Accuracy
Baseline, No Instructions 0.954
Answer questions about syllogisms. 0.961
Answer questions about syllogisms, ignoring semantics. 0.979
Answer questions about syllogisms in first-order logic form. 46/48

Table 3: GPT-3 ICL performance on syllogistic reasoning. Both training and test problems have
depth 1. The first three rows are performances on problems in natural language. The last row shows
the performance on FOL representations.

Premises: Gene is not line. There is no choice that is not gene. Conclusion: Not all choice is line.

ADJ template provides an alternative verbalization of syllogisms by treating each predicate as a
description of a property. In order to guarantee the consistency of the resulting questions, we limit
the scope of quantifiers to people. With this template, All A are B can be interpreted as Every
A person is B. We write 66 templates in total with at least 13 for each relation. We construct a
vocabulary of size 973 by sampling from adjectives for describing people and moods. Similarly,
terms are substituted while disregarding their meanings. One example of generated questions is:

Premises: It is impossible for a celestial person to be apprehensive. There is someone who is
celestial and inconsiderate. Conclusion: Some people are inconsiderate and not apprehensive.

4 EXPERIMENTS

In this section, we discuss three sets of experiments we conducted, one for each conclusion we
presented in Section 1.

4.1 CAN GPT-3 ROBUSTLY REASON ABOUT SYLLOGISMS WITH IN-CONTEXT LEARNING?

As GPT-3 (Brown et al., 2020) and other large language models (LLMs) have demonstrated superior
performance on many applications with in-context learning (ICL), we are interested in investigating
if they can solve logical problems composed by syllogism.

Experimental Details For all GPT-3 experiments, we use the fext-davinci-003, the most capable
and largest model with 175B parameters in the GPT-3 family. We construct the prompts with a
simple format that each few-shot example consists of two line 1) “Story: < context > Conclusion:
< conclusion >", 2) “Answer: < True/False >”. We balance the number of positive and
negative samples in both train and test data. Unless otherwise specified, we use the ADJ template
for problem construction. We also perform modest prompt engineering as shown in Table 3.

Results First, we test if GPT-3 can learn syllogisms and apply them to test samples. We use 24
training problems of depth one (one of each type of syllogism) and 1000 problems of the same
depth. To disentangle the effect variation of templates, we use a fixed template for each of the four
relations both in training and test samples. Under this setting, the only variance in the problems is
the sampled terms.

As shown in Table 3, with the best prompt, GPT-3 achieves a 97.9% accuracy on the test set. This
is surprising given that all possible deduction rules are given in the prompt and the training and test
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samples are almost identical except for the difference in substituted terms. Presumably, a human can
easily achieve 100% accuracy by simply following the rules in the samples.

Interestingly, we note that GPT’s performance improves as we explicitly prompt the model to ignore
the semantics. This is probably because the semantics of the conclusion may affect the model
prediction. As our data is purely synthetic, many samples may contradict commonsense, which
may cause to model to derive a wrong conclusion. Dasgupta et al. (2022) presented a more detailed
study of this content effect. To further disentangle the content effect, we leverage the symbolic
representations of FOL. We generate questions in purely symbolic form with all predicates denoted
by A, B, C in a fixed order. With this construction, there are only 48 possible problems at depth
1°. Again, we use 24 training problems to guarantee that all rules are presented in the prompt. We
test the model on all 48 problems. We observe that GPT-3 still fails to achieve perfect accuracy,
indicating that the model is unable to reason formally and semantics is not the only reason for
incorrect reasoning over natural language.

Compositional Generalization As the

above experiments are trained and tested 095
on the same depth, we extend our study to
investigate GPT’s compositional general- 0.90 —

L . . =\
ization performance. For this experiment, %‘, \<

we prompt the model with 34 examples, §oss{__ Fain d=2 —
24 base rules plus 10 examples at depth g Fain_d=3
d. Then we test the model at depth 2 — 8. osoy T Tno
We use ADJ template with randomly sam- Fain_d=6
pled terms. It is worth noting that due 0751 — waina=7
to the budget, we use 100 test examples — Tnds] . . . .
for each depth, potentially causing these 2 3 4 Esungf‘nepth B 7 8

results to have high variance. Neverthe-
less, as shown in Figure 1, model perfor-
mance deteriorates as the problem depth  Figure 1: Compositional generalization performance
increases, indicating that GPT is unable to  of GPT-3.

compose rules in the prompt to perform

multiple reasoning steps.

4.2 CAN PRETRAINED LANGUAGE MODELS LEARN SYLLOGISMS THROUGH FINE-TUNING?

Next, we test pretrained language models’ (PLMs) capabilities on logical reasoning through fine-
turning.

Experimental Details For experiments, we use pretrained RoBERTa-Large (Liu et al., 2019) from
Hugging Face (Wolf et al., 2020). Questions are fed to the model as: [CLS] context [SEP] con-
clusion [SEP]. For extra complexity, we shuffle the order of premises in the context. We take the
embedding of the [CLS] token from the last layer and project it to a scalar through a linear layer,
following a standard binary classification approach. We balance the number of positive and negative
samples. Similar to the previous compositional generalization setting, we finetune RoBERTa for 10
epochs on 5000 examples of depth d, with a learning rate of 1e-5 and a linear warm-up schedule for
1 epoch, followed by linear decay. We test on problems of depth 1-8, with 5000 data for each depth,
and take the average over five runs. We use ADJ template by default.

Results Figure 2 shows the results of finetuned RoBERTa. First, we observe that the model reaches
nearly perfect accuracies on test problems with a similar depth as the training problems. However,
we see that the performance starts to drop as the test complexity start to differ from that of training.
Especially, this deterioration happens in both directions, from easier problems to more complex ones
and vice versa. This result implies that the model still fails to generalize compositionally.

One possible fix is to train the model on multiple depths so it can observe various composition forms
in the training data. Accordingly, we finetune another ROBERTa on problems of depth 1-6 and test
it on depth 7-16. With this setting, the model success to generalize to test data with greater depths,
as shown in Table 4.

3There are 24 valid syllogisms, times 2 for true or false.
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Test d=1 Test d=2 Test d=3 Test d=4 Test d=5 Test d=6 Test d=7 Test d =8
Train d=1) 1.0000 0.9998 0.9832 0.9032 0.7883 = 0.6724  0.6030 | 0.5729 |
Train d=2| 09972 | 0.9997 0.9986 0.9874 0.9488  0.8827 @ 0.7982 0.7351
Train d=3 09074  0.9869 0.9979 0.9994 0.9992 09976 09964  0.9952
Train d =4 0.8091 0.9545  0.9878 0.9963 = 0.9986 @ 0.9995 09979 0.9772
Train d=5 0.7831 0.9379  0.9824 0.9948 | 0.9982 @ 0.9991 0.9988  0.9966
Train d=6 0.7707 0.9292 0.9748 0.9923 0.9964 09979 = 0.9991 0.9996
Train d=7 0.7726 09268 0.9769 0.9918 0.9961 0.9985  0.9993  0.9997
Train d=8 0.7480 0.9088 0.9615 0.9818 0.9932 0.9961 0.9985  0.9990

Figure 2: Results of finetuned RoBERTa-Large, both training and test questions are in ADJ template.
Cells are color-coded by their relative performance in the table.

TestDepth 7 8 9 10 11 12 13 14 15 16
Accuracy 1 1 1 1 0999 0.9958 0.9952 0.9944 0.9968 0.9984

Table 4: Finetuned RoBERTa-Large on depth 1-6, test on depth 7-16.

Generalization to Different Domains
Additionally, We test the model’s robust-
ness to different types of templates. Here,
we want to examine if the model can parse o8

09

the semantics and map them to the same E — g::::
underlying logical relations. As such, we 507 Depth=3
finetune RoBERTa with NOUN template — Depth=4
and test it with ADJ template. Results 06 _ g:ﬁt:é
in Figure 4 show that such transformation Depth=7
hurts the performance, however, the mod- 051 . . . . . Df“t“=f3
els still perform significantly over a ran- 100 500 1000 2500 5000 10000 20000

. . Number of Training Samples
dom baseline. As both the connectives and g same

terms are interpreted differently by the two

templates, our results suggest that LMs are  Fjgure 3: In-distribution test accuracy vs. number of
able to transfer the logical rules learned in  (rajning samples.

one domain to another.

Data Efficiency Another concern is how much data the models need to learn the logic. Figure 3
shows that RoOBERTa needs around 500-1000 to master the test data. At the first glance, it seems odd
that problems with less depths required more training samples than more complex problems. Our
explanation is a more complex problem presents more rules to the model than a simpler problem,
effectively allowing the model to learn more rules per sample. Notably, ROBERTa requires 1000
samples to robustly reason about depth one problem, a disproportional amount compared to 24
underlying rules.

4.3 CAN PRE-TRAINING ON SYLLOGISMS HELP DOWNSTREAM LOGICAL REASONING
PERFORMANCE?

Ultimately, our goal is to transfer the logical reasoning ability learned on synthetic data to real-life
problems. In this section, we test the effect of pre-training with logical problems on the downstream
logical question answering (QA) task. We use FOLIO (Han et al., 2022) a logical QA dataset
written by human experts based on FOL deduction. The task can be formatted in the same way
as our synthetic data, with one exception that its prediction has three target labels: True, False,
Unknown. Models need to predict Unknown when the conclusion is neural to the premises. This
dataset contains 1004 training samples and 204 test samples.
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Test d =1 Test d=2 Test d =3 Test d=4 Test d=5 Test d =6 Test d =7 Test d =8
Train d=1 0.9311 09228 08678 07518 07272 (06936 06819 06552
Train_d=2 09195  0.9391 09324 09089 08920 08512 08472 08035
Train_d=3 08478 09421 0.9470 09479 009419 09251 09146 08714
Train d=4 07725 09360 @ 09574 09633 09602 09599 09443 09151
Train_d=5| 06938 09128 09528 @ 009677/ 09686 09685 09544 09351
Train_d=6| 06265 08694 09106 | 09685 09681 0.9709 09570 09393
Train d=7| 05702 07990 08313 009463 | 09637 & 09736 0.9597 09380
Train_d=28} 0.5321 07358 07332 0875 09429 | 09726 00586 09345

Figure 4: Results of finetuned RoBERTa-Large, training questions are in NOUN template and test
questions are in ADJ template. Cells are color-coded by their relative performance in the table.

Finetuned on FOLIO  Zero-shot

RoBERTa 0.68 £ 0.02 0.5
Pretrained with Symbols 0.68 = 0.01 0.48 £0.02
Pretrained with Natural Language 0.71 £0.01 0.65 +0.01

Table 5: Finetuned and zero-shot performance on FOLIO of pre-training with syllogisms. Results
are average over five runs. Zero-shot performance of RoOBERTa is based on random guessing, see
text for more details.

Experimental Details We generate questions up to depth 6* with both NOUN and ADJ templates.
With these questions, We pretrain RoOBERTa-Large with 42000 samples for two epochs. Then,
we discard the prediction head of the pretrained model and finetune it with a new linear layer for
prediction. We follow the same parameter settings in Han et al. (2022) and report the performance
from the best checkpoint. For the baseline, we compare to RoBERTa finetuned only on FOLIO
with the exact parameter settings. Additionally, we compare to the framework proposed by Pi et al.
(2022), where pre-training is done with questions in symbolic form.

Results Table 5 shows the results of pre-training with syllogisms. After pre-training with our syn-
thetic problems, The finetuned performance on FOLIO improves by 3%. This indicates that the
model is able to transfer the logical rules learned during pre-training to downstream problems. Fur-
thermore, pre-training with pure symbols does not improve performance, suggesting that the natu-
ralness of synthetic questions does affect transferability.

Zero-shot Transfer Additionally, we test the transfer performance in the zero-shot setting. To adapt
the pretrained model for FOLIO, we create a subset of only True or False questions, which contains
135 questions. As such, a random baseline has 50% accuracy. We test our pretrained model directly
on this subset without any further finetuning. As shown in Table 5, our pretrained model improves
by 15% from the baseline. Similarly to the finetuning results, pre-training with symbols can not
improve the downstream reasoning performance.

5 ANALYSIS

Here we discuss the highlights of our results.

5.1 LARGE LANGUAGE MODELS ARE INADEQUATE IN RIGOROUS REASONING

From Sec. 4.1, we conclude that GPT-3 is unable to robustly apply syllogism through in-context
learning only. Especially, as syllogism is one of the most basic logical deductive systems and only
covers a small subset of FOL, failing in this simple benchmark raises a concern about LLMs’ ability

*We additionally test other depths and find 6 yields the best result.
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to perform formal logical reasoning. Recently, many advanced prompting methods have been pro-
posed for improving reasoning (Wei et al., 2022; Creswell et al., 2022; Nye et al., 2021). Inspired
by these methods, we perform an additional experiment to prompt GPT to produce an intermediate
representation in FOL symbols before generating the final output. We find that doing so reduces the
accuracy from 97.9% to 83.4%. Unfortunately, we are unable to test other prompting methods due
to budget. We expect the model performance on our dataset could be improved by employing these
advanced prompts. However, as these methods focus on multi-step reasoning, we do not expect
them can address GPT’s inconsistency on depth-one problems.

5.2 FINETUNED LANGUAGE MODELS CAN LEARN SYLLOGISMS AND GENERALIZE TO
OUT-OF-DISTRIBUTION DATA

In Sec. 4.2, we show that a finetuned RoBERTa is able to consistently apply syllogistic rules and
generalize to more complex questions. The model can also generalize to a new domain, as shown by
our synthetic domain transfer task. This indicates that PLMs are able to incorporate their semantics
knowledge from language modeling with the logical reasoning abilities learned from fine-tuning.

5.3 PRE-TRAINING WITH SYNTHETIC DATA CAN IMPROVE DOWNSTREAM LOGICAL
REASONING PERFORMANCE

In Sec. 4.3, a RoBERTa model pretrained on our synthetic questions improves its accuracy by 3% on
FOLIO dataset. As FOLIO is a human-written dataset, our results show that reasoning ability from
synthetic data could potentially transfer to real-life applications. Importantly, as logical reasoning
dataset are constructed with expensive human annotations, our pipeline opens a possibility for unsu-
pervised learning for logical reasoning. Moreover, as shown by our ablation study that pre-training
with questions in a more natural form achieves better transferability, we expect the downstream per-
formance could be further improved by employing a pipeline that can automatically produce more
realistic questions.

One limitation of our framework is that templates have limited variety in natural language. For
example, when negating a term, our templates can only append not to the prefix, however, in natural
language, negations are often expressed by antonyms, e.g., from happy to sad instead of not happy.
To overcome this limitation, we test with using LLMs for verbalization and using back translation to
augment the data. However, none of these attempts yield a satisfactory result, we leave the question
of automatically generating natural questions to future work.

6 CONCLUSION

We introduce a novel pipeline that composes syllogism into logical questions and translates them
into natural language. With this pipeline, we use synthetic logical questions to test the logical
reasoning ability of large language models with in-context learning and pretrained language models
with fine-tuning. Our results indicate that one of the most capable LLMs, GPT-3, failed to robustly
apply syllogisms and to generalize compositionally, even when all rules are given. We further show
that a finetuned model is able to learn reasoning rules and generalize them to new domains. Last,
we show that pre-training with our synthetic data can improve model performance in answering
human-written logical questions.

Our work suggests the possibility of improving logical reasoning through un/self-supervised learn-
ing with synthetic data. As syllogism has limited expressive power, generalizing this framework
to FOL is a natural extension of our work. To this end, this paper demonstrates the potential of
leveraging symbolic systems as scaffolds for learning to reason.
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